܄

【每周一本书】之《深入浅出深度学习:原理剖析与Python实践》

【数据猿导读】 在过去的这十年,深度学习已经席卷了整个科技界和工业界,2016年谷歌阿尔法狗打败围棋世界冠军李世石,更是使其成为备受瞩目的技术焦点

【每周一本书】之《深入浅出深度学习:原理剖析与Python实践》

来源:数据猿  作者:abby

在过去的这十年,深度学习已经席卷了整个科技界和工业界,2016年谷歌阿尔法狗打败围棋世界冠军李世石,更是使其成为备受瞩目的技术焦点。

今日,小编就为大家推荐一本能让初学者和“老司机”同样感到非常有用的机器学习图书——《深入浅出深度学习:原理剖析与Python实践》

深度学习_Python_大数据-1

介绍深度学习的书籍不少,但是《深入浅出深度学习:原理剖析与Python实践》与其他同类书相比,视角明显不同。如果要给本书写个宣传语,或许可以是“深度学习工程师速成培训教材”。本书对读者的知识结构有两点要求:一是学过高等数学,二是熟悉 Python 编程。换而言之,各个专业的理工科学生,尤其是学过 Python 编程的,都是此书的目标读者。

在本书编写的过程中,作者希望能从理论和应用相结合的角度,对深度学习的相关知识进行较为全面的梳理,本书既可以作为初级读者的入门书籍,也适合中级读者用来加深对理论知识的理解。全书覆盖了线性代数、概率论、数值计算与最优化等基础知识,以及深度学习的两大核心:概率图模型和深度神经网络。

具体来说,本书由以下三大部分构成:

第1部分(1-2章):概要,共分为两章。第1章主要阐述了深度学习、人工智能相关的背景,深度学习的原理,以及当前流行的深度学习框架对比;第2章介绍了深度学习框架Theano的使用,着重对Theano的基础知识和编程范式进行了讲解。

第2部分(3-7章):与深度学习相关的数学和机器学习方面的基础知识,共分为5章。第3章介绍线性代数基础知识;第4章介绍了概率论和数理统计相关的知识;第5章介绍概率图模型,包括贝叶斯网络和马尔科夫网络的原理;第6章简要回顾机器学习的基础知识,并介绍机器学习模型与深度学习模型之间的联系;第7章,深入分析几种常用的机器学习最优化方法,包括具有一阶收敛速度的梯度下降法和共轭梯度法,以及具有二阶收敛速度的牛顿法和拟牛顿法。

第3部分(8-13章):介绍了各种常见的深度学习模型,包括一系列的深度学习模型理论及其应用,本部分共分为6章。

作者介绍:

黄安埠,2012年毕业于清华大学,获硕士学位,在校期间活跃于TopCoder等编程竞赛社区。现为腾讯基础研究高级工程师,研究领域包括个性化推荐、自然语言处理和大规模的相似度优化计算,特别是对于深度学习在推荐系统的应用有深入的研究,并申请了国内十余项相关专利。

购买链接:https://item.jd.com/12195740.html


推荐阅读:

【每周一本书】之《大数据之路:阿里巴巴大数据实践》

【每周一本书】之《CPS:新一代工业智能》:从特斯拉无线预测 到工业转型核心技术CPS

【每周一本书】之《机器人时代》: 技术、工作与经济的未来

【每周一本书】之《Mesos 实战》:提高集群资源利用率,服务自动化部署的好帮手!

【每周一本书】之《数据天才:数据科学家修炼之道》

【每周一本书】之《Druid实时大数据分析原理与实践》:来自腾讯、小米等公司的一线实践经验

【每周一本书】之《全栈数据之门》:数据科学的全栈基础入门宝典

点击查看更多大数据书籍……


【本栏目合作伙伴】:清华大学出版社、电子工业出版社、北京师范大学出版社、中国人民大学出版社、中信出版社、上海交通大学出版社。

欢迎更多合作伙伴加入!也欢迎勾搭小编,微信:wmh4178,备注“书”


来源:数据猿