܄

思路对了,其实数据分析很简单

【数据猿导读】 面对数据处理,数据分析,有人觉得很难、很乱,其实我们首先要做的是对数据处理的正确认识,也就是数据分析思路

思路对了,其实数据分析很简单

关于数据化这个概念,我打个比方。

它可以是是一部CCTV,起监控作用,可以通过数据及对应的分析指标监控到业务的各个层面;也可以是是一台预警机,提起预测销售,库存情况,回款预测,盈亏等数据,业务层面可提前做出反应,从而制定对应的策略;还可以是一架播种机,为新产品,新策略,新政策的制定提供数据支持。

面对数据处理,数据分析,有人觉得很难、很乱,其实我们首先要做的是对数据处理的正确认识,也就是数据分析思路。

1、分析需求

分析需求,首先要收集需求,需求可以从访谈、走访、市场调研的方式获得。对于手机来的需求也许很杂很乱,目标不同意,可以使用思维导图分析数据,5W2H分析法还有人货场分析法。确定好的需求一定要经过合适明确。

2、收集数据

在收集过程中不断要问:数据来源是否可靠?我收集的数据方法是否有瑕疵?我收集的数据是否有缺失?

3、整理数据

有人会问,为什么会有整理数据这一步?整理数据是对收集到的数据进行预处理,使之变成可供进一步分析的标准格式的过程。数据整理的好与坏直接决定分析的结果!对于数据的处理如果用EXCEL处理,有分类,排序,做表,预分析等等,利用删除重复项,透视表, 图表,函数等功能进行辅助整理;

然而,很多企业的数据量很大,需要用专门的ETL工具清洗,或者用集成了ETL、数据处理、可视化的工具FineBI。

4、分析数据

分析数据的思路可以按照点-线-面的三维分析法,点是某个节点的一个指标值。线是包含这个点的纵向发展趋势或者包含这个点的横向对比趋势。面是包含这个点的上一级或者对象的指标值。

5、数据可视化

将分析结果用简单而且视觉效果好的方式展示出来,一般运用文字、表格、图表和信息图等方式进行展示。数据可视化是数据分析的“表达”,好的数据可视化可以锦上添花,相反会前功尽弃。

数据图表主要作用是传递信息,不要用他们来炫技,不要舍本逐末过分追求图表的漂亮程度。

也不要试图在一张图表中表达所有的信息,可以选择dashboard这样的图表分析方式。

6、应用模板开发

对于那些标准化程度比较高的数据以及使用频率比较高的分析文件,可以开发成一种固定的模板格式,好处标准化,程序化,大大节约时间。

对于数据量大的模板,或者需要共享/共同开发的模板,可以使用FineReport这种专门的报表工具来处理。

7、分析报告

分析报告是数据分析的最终制成品,可以用word,excel,ppt作为报告的载体,承载的是图片还是网页,以及如何美化在这就不算重点,也不详解了。写分析报告之前,切记要弄清楚你是给谁汇报和分析报告,对象不同,关注点自然不一样。


来源:数据分析不是个事儿

声明:数据猿尊重媒体行业规范,相关内容都会注明来源与作者;转载我们原创内容时,也请务必注明“来源:数据猿”与作者名称,否则将会受到数据猿追责。

刷新相关文章

大数据投融资周报(4月5日——4月7日,共9起)
大数据投融资周报(4月5日——4月7日,共9起)
大数据周周看:今日头条近10亿美元融资入账,Adobe推出体验云平台Experience Cloud
大数据周周看:今日头条近10亿美元融资入账,Adobe推出体验云...
【独家首发】数之联完成A轮数千万元融资,大数据分析挖掘领跑者获资本青睐
【独家首发】数之联完成A轮数千万元融资,大数据分析挖掘领跑...

我要评论

精品栏目

[2016/10/10]

大数据24小时

More>

[2016/09/26-7]

大数据周周看

More>

[2016/09/01-30]

大数据投融资

More>

[2016/11/28-2]

大咖周语录

More>

[2016/11/29-6]

大数据周聘汇

More>

[2016/12/06-13]

每周一本书

More>

返回顶部