܄

在选择数据库的路上,我们遇到过哪些坑?(二)

【数据猿导读】 你会怎么选择数据库,是关系数据库、XML 数据库、资源描述框架(RDF),还是图形数据库? 本文的第1部分 深入而生动地探讨了各种选择。在第2部分,将深入介绍使用 Neo4j 的注意点

在选择数据库的路上,我们遇到过哪些坑?(二)

过渡到 Neo4j 之后的经验和教训

下面介绍一些有关运行 Neo4j 的实用技巧:

1. 如果你是 Java 商城,请嵌入式地运行 Neo4j

Neo4j 是本地 Java 平台,我们又是 Java 商城,用 Neo4j 相当合适。嵌入 Neo4j 让我们不用再进行 REST 调用,这对于安全来说确实很重要。有关进行 REST 调用的进一步危害,请观看这段有关 REST 安全漏洞的 JavaOne 讨论。

嵌入式地运行 Neo4j 还为我们大幅降低了复杂性。我们可以直接在进程中调用 Neo4j API,从而快速了解Cypher 语言,以便运行 Cypher 和 Java API 这两者的结合体。同时我们再也不需要托管和非托管的扩展了。

2. 摸清自己的优势

摸清自己的优势和所选择的工具的优势,这一点极为重要。用工具来做不适当的事,效果会大打折扣。

本地图形数据库在关系方面的表现确实很好;在图形中找到切入点,然后按照需要深入地研究各种关系,这在 Neo4j 中快得惊人。但如果想要在单个节点之外进行复杂的多值属性全文检索,效果就大打折扣了 —— 但我们选择图形数据库并不是为了做这个。

3. 了解查询时会发生哪些事情

了解查询时会发生哪些事情,这一点也极为重要,这能够优化 Cypher 语言。

请看下面这个非常简单的查询。我想要找到 Franklin Country 所有拥有狩猎执照的男性,并且执照上的地址需要和此人的家庭住址相匹配,以便我们确认这是同一个人。

我有一个人员节点,一个执照节点,还有一个位置节点,每个节点上都有各种不同属性:

数据库要做的第一件事就是找到切入点(可能有多个切入点),然后图形从切入点展开搜索。寻找切入点通常是个让人头痛的问题。为此要使用带有静态索引集的基于规则的规划程序,这一软件已于近期升级为基于费用。这虽然还不够完美,但无疑已经朝着正确的方向前进了一大步。

索引

索引基本上会复制数据库中的信息片段,这样有利于它迅速找到节点。在本例中,只使用信息片段来确定切入点。虽然不是必须要使用索引,但它确实能派上用场。如果要在特定的节点属性上进行检索,在节点上设置一个索引会是个好办法,即使这会占用磁盘空间。

索引分为两种:schema 和 legacy。Schema 索引是最新版,使用内部自定义的 Neo4j 内置索引,目前是默认设置。

一旦利用 Cypher 或 Java API 创建 schema 索引后,这些索引就会自动由数据库维护。例如,如果你想在每个带有“人员”标签和“性别”属性的节点上创建索引,当你创建新节点、更改节点值或删除节点时,数据库将自动对其进行更新。这时你也可以设置限定条件,比如必须存在属性或属性必须是唯一的。

Legacy 索引是 Lucene 索引,是较早的版本但尚未弃用。可以通过配置文件、Neo4j 属性文件、Java API 或 Cypher 来设置 legacy 索引。Legacy 索引使用的是 Lucene 而非 Neo4j 专有索引机制。我们在用 Neo4j 时几乎没有什么漏洞,而每次遇到的漏洞基本都和 legacy 索引有关。即使是这样,有时候这些索引也是必要的。

Apache Luke 是一款非常不错的开源工具,用户可以用它直接查看和搜索 Lucene 索引。这也帮助我们修复了 legacy 索引中的异常行为。

自动索引与手动索引

Legacy 索引有两种用法:自动索引和手动索引。我建议使用自动索引,因为它更容易维护。基本上只要设置一次(可以在配置文件中设置也可以通过 API 设置),然后设为在特定类型的节点上为特定类