܄

2016年我国能源行业大数据的发展现状及市场分析

【数据猿导读】 能源大数据理念是将电力、石油、燃气等能源领域数据进行综合采集、处理、分析与应用的相关技术与思想。能源大数据不仅是大数据技术在能源领域的深入应用,也是能源生产、消费及相关技术革命与大数据理念的深度融合,将加速推进能源产业发展及商业模式创新

2016年我国能源行业大数据的发展现状及市场分析

随着信息化的深入和两化的深度融合,大数据在石油石化行业应用的前景将越来越广阔。以下是是2016年我国能源行业大数据的发展现状及市场分析:

(1)石油天然气行业大数据进展

石油天然气行业的大数据仍处于起步阶段。2014年石油行业共组织召开5场提高油气行业信息化的会议,意在提高行业信息化程度,推广大数据在行业内的应用。根据中国石油招标网的数据统计,2014年中国石油共发起建设12个与大数据有关的项目,其中东方物探、新疆塔里木油田及大庆油田在大数据领域的动作最多。项目建设内容多集中在建设油田勘探开发一体化数据中心、建设研究成果知识库2个领域。这也说明目前国内油气行业仍处在数据的采集、存储阶段,尚未上升到大数据挖掘分析的高度。

原油炼制及油品销售环节的大数据处于萌芽阶段。企业对炼油大数据仅有概念性的了解,目前能够体现业务布局的即阿里与中石化的合作。阿里云今年4月 20日宣布与中国石化展开技术合作,中国石化将借助阿里巴巴在云计算、大数据方面的技术优势,对部分传统石油化工业务进行升级,打造多业态的商业服务模式。

油气行业长期以来处于垄断地位,对于新技术的接受和推广较为缓慢。但随着国家大数据战略的推行,大数据在能源行业必将展开应用。预计大数据也将写入能源行业的十三五规划,未来大数据必会成为油气行业新的爆发点。

(2)电力行业大数据进展

电力大数据在国内发展势头良好,国内较为落后。早在2013年,国家电力集团曾发起在电力行业推行大数据的尝试,但很快终止了这次行动。最近一年国家开始大力推行电力改革,鼓励分布式电源主要采用“自发自用、余量上网、电网调节”的运营模式,积极发展融合先进储能技术、信息技术的微电网和智能电网技术,确保可再生能源发电量依法全额保障性收购,这为分布式发电和新能源汽车在未来大规模接入电网创造条件。

(3)风电等新能源大数据进展

国家近几年大力推行风力发电。风电行业具有大数据几个主要特征中的数据量大的特征,大数据的实时性也为风电行业提供精准的解决方案——实时数据采集和在线监测,帮助风电管理人员实时监控终端运行状态,高效管理数据。

(4)智能终端与能源行业的结合

为智能化产品研发提供支持。将能源大数据、信息通讯与工业制造技术结合,通过对能源供给、消费、移动终端等不同数据源的数据进行综合分析,设计开发出节能环保产品,提供付费低、能效高的能源使用与生活方式。

二、市场需求分析

①石油行业的大数据需求

国内三大石油国企将成为推动石油大数据进展的主力。中国石油的数据中心,中石化的能源行业十三五规划、炼油大数据、油品销售大数据,中海油的海上石油勘探、海底地震,这些都是大数据与能源行业的结合点。

②电力行业的大数据需求

国家电网于2014年重新开始大数据的尝试,并开始大力推动智能电网。智能电网的推广,将带动对大数据调节用电高峰的需求,家庭用电及工业用户节能省电的需求,这些需求必将引发一系列智能设备、数据分析厂商的崛起。

③新能源的大数据需求

风电装机容量大。截至2013年底,中国风电装机容量已超过9100万千瓦,投运机组近7万台,并网发电的风电场约2100个。目前国家规划到 2020年,风电装机容量达到2亿千瓦。当前风电行业的痛点在于风电机组性能差异大,年发电量达不到预期指标;风电场设计、运行不合理,设计偏差造成发电量难以达到设计指标;风电运行数据难以有效利用,积累的海量数据未能充分利用,通过分析挖掘可以发掘很多改善发电性能的措施。利用大数据分析挖掘的方法可以优化风电机组功率特性,提高可利用率。更多相关行业分析请查阅由中国报告大厅发布的《2016-2021年能源矿产行业深度分析及“十三五”发展规划指导报告》。


来源:中国报告大厅

声明:数据猿尊重媒体行业规范,相关内容都会注明来源与作者;转载我们原创内容时,也请务必注明“来源:数据猿”与作者名称,否则将会受到数据猿追责。

刷新相关文章

大数据投融资周报(4月5日——4月7日,共9起)
大数据投融资周报(4月5日——4月7日,共9起)
大数据周周看:今日头条近10亿美元融资入账,Adobe推出体验云平台Experience Cloud
大数据周周看:今日头条近10亿美元融资入账,Adobe推出体验云...
全球能源产业观察:亚洲炼油厂利润提升,印度天然气发展提速
全球能源产业观察:亚洲炼油厂利润提升,印度天然气发展提速

我要评论

精品栏目

[2016/10/10]

大数据24小时

More>

[2016/09/26-7]

大数据周周看

More>

[2016/09/01-30]

大数据投融资

More>

[2016/11/28-2]

大咖周语录

More>

[2016/11/29-6]

大数据周聘汇

More>

[2016/12/06-13]

每周一本书

More>

返回顶部